
Approved for public release; distribution unlimited.

Comparing Performance of Static
Versus Mobile Multiagent Systems

National Aerospace and Electronics Conference (NAECON)
Dayton, OH, October 10-12, 2000.

Scott A. O'Malley, Athie L. Self & Scott A. DeLoach

Department of Electrical & Computer Engineering
Air Force Institute of Technology

2950 P Street, Wright-Patterson AFB, OH 45433-7765

This page intentionally left blank.

National Aerospace and Electronics Conference (NAECON)
Dayton, OH, October 10-12, 2000.

COMPARING PERFORMANCE OF STATIC VERSUS MOBILE
MULTIAGENT SYSTEMS

SCOTT A. O’MALLEY, ATHIE L. SELF AND SCOTT A. DELOACH

Air Force Institute of Technology, Department of Electrical and Computer Engineering, WPAFB, OH 45433-7765

Abstract. This paper analyzes the performance differences between static and mobile multiagent systems. To do
so, we developed solutions to a distributed text search problem, each using a different approach to multiagent
systems (static versus mobile) on an isolated test network. Changes were then made to the agent environment,
various constraints applied, and the resulting effect on the systems measured. Each system was evaluated using a
number of performance metrics to demonstrate the strengths and weaknesses of the respective approach.

Key Words: Multiagent Systems, Mobile Agents, Static Agents

1. INTRODUCTION

Over the past few years, multiagent systems have
grown in popularity as a viable solution to complex,
distributed information systems. The largest “open
system” is the Internet, with new content being
generated every day. The distributed nature of the
information on the Internet lends itself to multiagent
solutions. Multiagent systems are reported to have
advantages such as faster execution time, less
communication bandwidth, and greater reliability.
The type of agents employed, either static or mobile,
also have their own unique set of advantages and
disadvantages.

Today, a large body of quantitative data does not
exist upon which system designers can base their
“agent versus non-agent” system design decisions
[3]. Likewise, once an agent approach has been
selected, there is no data supporting the decision on
the type of agents to use, mobile or static. Both of
these design choices are subjects of current research
at the Air Force Institute of Technology (AFIT).

The purpose of this paper is to collect
quantitative data to help software engineers make the
correct design choice when they must select a mobile
or static multiagent system design. We begin this
process by analyzing the performance differences
between static and mobile multiagent systems. To
perform this analysis, we developed static and mobile
agent solutions to the problem of distributed file
content search. We then modified the agent
environment, applied various constraints, and
measured the resulting effect on the systems. Each
system was evaluated using a number of performance
metrics to demonstrate the strengths and weaknesses
of each approach.

The remainder of the paper is structured as
follows. Section 2 discusses the distributed file
content search problem the agent systems were
designed to solve. Section 3 covers the agent
environment used in testing. Section 4 presents the
methodology used to develop the systems and
explains decisions made during the design of each
approach. Next, Section 5 describes the experiments
as well as the environment in which the agents
worked. Section 6 presents the results of the
experiment while Section 7 discusses those results
and possible future research.

2. PROBLEM DESCRIPTION

The distributed content search problem was
devised with the Internet in mind. The premise of the
problem is that information technology users have
vast amounts of information at their disposal
distributed across their organization’s data storage
infrastructure. As these technology users perform
their jobs, they are required to research certain topics
as they generate documents. To assist these users in
their day-to-day work, management has decided to
have a “content search agent” developed. The goal
of the “content search agent” is to search through the
files stored within the data stores and report back the
location of files that have a high probability of
containing information related to the user’s research.

To simplify the problem, the following
assumptions were made:

• The files to be searched were ASCII text
files, including files ending with .txt, .html,
.rtf, and .dat

• The search to be used was a simple string
matching search

2

• The number of occurrences of the string in
the document was the probability of
relevance

Additional requirements included the ability to
get interim results on demand and the ability to
cancel a search at any time.

3. AGENT ENVIRONMENT

For an agent to operate within an organization’s
information system infrastructure, they require
certain services from the infrastructure. The FIPA
Agent Platform is an example of agent enterprise
architecture. As described by Odell [4], several
enterprise-related issues must be addressed by the
agent enterprise architecture:

• Agent Platform – The agent platform is an
environment in which the agent can be
deployed.

• Agent Management System – The agent
management system is an agent that
manages the access and use of the agent
platform.

• Directory Facilitator – The directory
facilitator is a “yellow pages”-like directory
service that advertises the services the
agents within the system can provide.

• Agent Platform Security Manager – The
APSM maintains the security policies for the
platform. The APSM also is responsible for
negotiating access requests for agents with
other APSMs.

• Agent Resource Broker – The agent resource
broker that maintain and broker software
services provided by non-agents.

• Wrapper Agent – The wrapper agent is an
agent that can communicate with non-agent
software, allowing agents to interact with
the non-agent software.

• Agent Communication Channel – The agent
communication channel allows agents to
exchange information between one another
concerning services and communication
messages.

Odell suggests that at a minimum, an agent
platform should provide at least the first three
capabilities. In our study, we used an agent platform
called Carolina. Carolina is currently in development
at the University of Connecticut as part of the Multi-
Agent Distributed Goals Satisfaction project. AFIT,
the University of Connecticut, and Wright State
University are conducting this research jointly.

Carolina is a mobile agent system written in
Java, much like Concordia, Odyssey and Voyager
[5]. The current version of Carolina provides the

agent platform, agent management system and an
agent communication channel. Carolina also
provides an abstract agent class called BaseAgent,
which provides the basic capabilities for Carolina
agents. The BaseAgent class provides the capability
to read messages from and write messages to the
Carolina’s Message Directory, move from one
Carolina server to another and perform whatever job
is deemed necessary for the system. Agents are
identified by agent type and a unique identification
number (ID). A Carolina server keeps track of local
agents running on it and forwarding addresses for
agents that have moved to another host.

Carolina uses TCP/IP socket connections for the
passing messages and agents between servers. The
Message Manager listens to port 16000 while the
Agent Manager listens to port 15000. When
messages or agents are sent, the sending system
opens a port and sets the destination port to be the
appropriate port on the receiving machine.

Communication between agents running on
Carolina servers is accomplished by passing
serialized Java objects. Messages are posted to the
server using the MessageManager Class. The
Message Manager decides whether the message is for
a local agent or an agent that has moved to a remote
host. If the agent is local, the message is put into a
message directory where it remains until the agent it
is addressed to reads it from the server. Carolina
agents must constantly poll the server to see if they
have any messages waiting for them.

Messages can be addressed by agent ID or by
agent type. The former allows for the interaction
between specific agents, while that latter allows an
agent to communicate with any other agent of a
particular type without requiring knowledge of a
specific agent. For messages sent by agent ID, the
message is sent to the server where the agent is active
and put in the message directory until the agent with
the correct ID reads it. However, when messages are
sent by agent type, any agent of that type can read the
message. Once the message is read it is removed
from the message directory and no other agents of
that type can read the message. A service broker is a
good example of how these two addressing methods
work. When a new agent comes into the system, it
can announce itself and the service it provides to a
broker agent. The agent ID would be one piece of
information recorded by the broker. When another
agent requests a list of service providers from the
broker, it will receive a list of agent IDs and hosts.
The requesting agent can then send messages directly
to the agent that provides the required service.

In Carolina, mobility is handled by Java’s object
serialization capability, which takes the identity and
state of a class and encapsulates it. Once serialized,

3

the state and identity is passed to another agent
platform and reconstructed [5]. In Carolina, the
program code for each type of mobile agent resides
on each server so the code does not have to be passed
when an agent moves.

4. SYSTEM DESIGN

To design the two systems, we used an agent-
oriented methodology for developing multiagent
systems called Multiagent System Engineering
(MaSE). The basic outline of MaSE is shown in
Figure 1 [1, 2, 6]. This methodology describes the
analysis and design of multiagent systems in seven
steps.

To assist software engineers in using MaSE, the
AFIT Agent Lab has also developed a computer-
based tool, called agentTool. During the design of
our systems, agentTool implemented only the design
phase of MaSE (it has since been extended to cover
both the analysis and design phases). The agentTool
environment greatly assists the designer in creating
agent classes and defining the interactions between
agents.

Creating Agent
Classes

Require-
ments

Use Cases

Sequence
Diagrams

Deployment
Diagrams

Agent
Architecture

Capturing
Goals

Refining Roles

Assembling
Agent Classes

System Design

Applying Use
Cases

Goal
Hierarchy

RolesConcurrent
Tasks

Conver-
sations

Agent
Classes

Constructing
Conversations

Analysis
D

esign

Figure 1: MaSE Methodology

These interactions become agent conversations
that are defined using coordination protocols. These
protocols describe the possible sequences of
messages that may be passed between agents to
achieve coordination. Conversations between agents

in MaSE are defined by state machine based
representation. The implementation of conversations
was an integral part of the static agent system.

4.1. Static Agent System Design

For the static agent system, the system was
implemented with two extensions of the Carolina’s
BaseAgent class; these agents were termed auxiliary
because they were only required to read messages
from and write messages to Carolina’s Message
Directory. The auxiliary agents created instances of
the AgentBody class. AgentBody itself is abstract;
the concretized classes that extend the AgentBody
class (Search System and Researcher) contained the
functionality of the agents, through conversation
management and methods. The standard
configuration had a SearchSystem Agent and a
Researcher Agent located on each machine on the
network that had the Carolina platform running. A
diagram depicting the overall system architecture for
the static system is shown in Figure 2.

SearchAgent &
ResearcherSearchAgent &

Researcher

SearchAgent &
Researcher

SearchAgent &
Researcher

SearchAgent &
Researcher

SearchAgent &
Researcher

SearchAgent &
Researcher

SearchAgent &
Researcher

Figure 2: Static Agent System Architecture

For intra-agent communication, the concept of a
MaSE conversation was maintained. A conversation
is the definition of valid sequences of messages that
the agent uses to communicate. For example, when it
was necessary for a System Agent to execute a
search, it started conversations as Java threads and
sent messages to each of the Researcher Agents of
which it had knowledge. For each agent, a
conversation was initiated to allow asynchronous
execution of the Researcher Agents. The
conversation provided an identifier, the conversation
ID, for the messages involved in the conversation, so
that the messages went to the correct agents. Each
side of the conversation would generate a unique
identifier and pass it along with the messages it
generated. The conversations interacted with their
parent agents through method invocation.

4

A typical conversation flow is captured below in
the sequence diagram of Figure 3. A search begins
with an initial request to other SearchSystem agents
for information about their local Researcher agents.
This exchange is necessary because the only
SearchSystem agent that a Researcher registers, or
deregisters, with is the SearchSystem on the same
local host. After the SearchSystem agent knows
about the “foreign” Researcher agents, the
SearchSystem sends “request search” messages to
each of the Researchers.

Request Search

Interim Acceptance

Complete Results

Search
System

Researcher

Figure 3: Search Request Sequence Diagram

 The return of the “Interim Acceptance” message
is necessary so that the Researcher knows with whom
it is conversing. This information is stored within the
messages that are passed, but the conversation ID
cannot be generated until the first message is
received. The responder’s conversation ID is
required in the two systems operation described in
Section 2. In either case, the user only interacts with
the local SearchSystem agent. The SearchSystem
agent then forwards the user’s request to the
Researcher agents. Because these messages are only
appropriate within conversations, and not as
conversation initiators, the SearchSystem must know
the conversation identifier so the message can be
routed to the appropriate conversation.

4.2 Mobile Agent System Design

Mobile agents were also implemented using an
extension of the BaseAgent class in Carolina. The
mobile system consisted of two types of agents:
MobileAgentManagers and MobileSearchAgents,
which were the agents that actually moved and
searched throughout the system. There was a single
MobileAgentManager, which ran one of the
network’s Carolina servers.

Basic operation of the mobile agent system is as
follows. Once a search request is received, the
MobileAgentManager instantiates one or more

MobileSearchAgents to accomplish the search task.
The search string and a list of machines are passed to
each MobileSearchAgent. The MobileSearchAgents
then move to the machines on their list and search
them. Once their list is empty, the
MobileSearchAgent returns home and sent a final
results message to the MobileAgentManager. A
diagram showing the setup of the Mobile Agent
System is shown in Figure 4.

MobileAgentManager

MobileSearchAgent

Figure 4: Mobile Agent System Architecture

All messages sent to MobileAgentManagers are
sent by type and hostname since the
MobileSearchAgents knows the host they came from.
Messages sent from the MobileAgentManager to a
MobileSearchAgent are sent by agent ID since when
a MobileSearchAgent is created it passes its ID to its
MobileAgentManager. A typical flow of message
traffic for the mobile system is shown in Figure 5.

Request Search

Complete Results

Mobile
Agent

Manager
Mobile
Search
Agent

Figure 5: Search Request Sequence Diagram

There is no requirement for a
MobileSearchAgent to initiate communications with
the manager when it is on a remote host. However,
to obtain interim results or to cancel the search, the
MobileSearchAgent has to periodically check the
server to for these two requests, which appear as
messages. When a MobileSearchAgent receives an

5

interim results message, it sends all of its search
results, for each host it has searched so far, back in a
message. If a cancel search message is received, the
MobileSearchAgent stops searching, immediately
returns home and sends a final results message to the
MobileAgentManager.

Since Carolina keeps track of where agents have
moved, the MobileSearchAgents does not need to
inform its MobileAgentManager of its current
location. If a MobileAgentManager needs to send a
message to a MobileSearchAgent, all the
MobileAgentManager has to do is post a message to
the local Carolina server and the message is
forwarded until it reaches the machine where the
agent is operating.

5. EXPERIMENT

AFIT’s Bimodal Computer Laboratory, or Pile
of PCs, was selected for the experiment. The Pile is
an isolated network of twenty computers running
either Linux 6.0 or Windows 2000. It is running a
100 Mbps Ethernet backbone with fiber channels
running to the servers. The PCs are Pentium III 600
MHz processors with 128 MB of RAM. To capture
the communications between agents, Exdump v0.2
[7] was used. Exdump tracks TCP/IP packets from
machine to machine, as well as captures packet size
and timing information.

For the execution time experiments, the tests
were conducted on the eight machines running
Windows 2000. Each machine was loaded with five
text files within a specific subdirectory of the local
hard drive. The size of the files ranged from 667
kilobytes to 2.31 megabytes.

6. TESTING AND ANALYSIS

During the testing phase, several agent
configurations were evaluated. The first sets of tests
were designed to acquire quantifiable data on the
performance of static and mobile agents. Several
scenarios were set up for the static agent system
while a second set of tests were designed for the
mobile agent approach.

6.1. Static Agent Tests

Two implementations using static agents were
developed to test the impact of using conversations.
The first approach reported interim results
automatically. The intention of this design was to
have the results close to the user. With the results
close, a request for interim results or a cancel could
be posted immediately. Messages that followed from
a cancel search just wrapped up the conversation.

The second approach attempted to minimize the
number of messages passed, and hence, the amount
of processor time lost waiting for messages. This
approach made use of an acceptance message to let
the SearchSystem agent know about the responder
side of the conversation. This acceptance message
did not include any of the result data. If the user
requested interim results or decided to cancel the
search, the SearchSystem agent sent messages to the
Researcher agents informing them of the intentions.
The Researcher agent responded with the current
results it had been accumulating. If the message
requested interim results, the agent continued the
search process on the current file until completion.

The time required to search the files on a single
machine took the first static implementation over
fifteen minutes to execute while the second approach
took only thirteen seconds. The impact of the extra
message handling proved to be quite significant. To
post and receive messages in a timely manner, both
implementations had to constantly poll the Carolina
server. To prevent this polling from dominating the
processor, the polling thread is forced to give up
control of the processor. The conversations are
executed as state machines. When a conversation is
waiting for a message it remains in its current state.
The state machine is implemented as a while loop
with a switch statement based on the state of the
conversation. This thread continues cycling through
the same state until a new message arrives, which
causes significant wasting of processor time when
multiple conversations are executing simultaneously.
Bringing multiple platforms into the mix only
exasperated the situation, as the amount of processing
time given to each process varies.

Average search times of the static agents (using
the second implementation) on different numbers of
machines are shown in Table 1. For every machine
added to the search, approximately five seconds was
added to the execution time. This overhead can be
accounted for in several ways. First, because the
Carolina environment does not currently provide a
broadcast capability, messages sent to each
Researcher agent must be sent consecutively. Since
there were multiple agents in the system, with each
requiring its own conversation and thus a separate

Table 1: Static Agent Search Execution Time
Machine
Config

Avg Min Max St Dev

1 Machine 12.645 10.717 15.195 1.601
2 Machine 17.008 15.244 18.440 1.603
3 Machine 21.315 21.094 21.535 0.157
4 Machine 26.412 24.259 27.585 1.491
5 Machine 32.117 30.329 33.614 1.585
6 Machine 36.678 36.369 38.272 0.606
7 Machine 42.742 42.289 44.041 0.511
8 Machine 49.302 48.619 51.424 1.144

6

thread, the messages probably were not forwarded
without interruption. Additionally, since there were
multiple processes running on each machine, the
processor was being shared by multiple agents when
the message was received. The method the operating
system uses to share the processor played a major
role in the conversation overhead.

The second way to account for the overhead is
based on the time required to process the message.
As a message is received by Carolina, it is
immediately placed in a container for the
conversation to find it. The conversation, however,
only looks for messages at certain times in its
execution loop. If a message has not arrived for it at
that time, the conversation loops through its state
machine. Since the state will not have changed, it
will come to the same line of code to get a message,
and the conversation will check the message
container. The conversation thread could repeat this
loop many times before control was given to another
process. Because the agent—which polls the server
for messages—is running in a separate thread, it
cannot handle a new message until the conversation
releases the processor.

6.2. Mobile Agent Tests

 Test runs using mobile agents were performed
incrementally. The first test consisted of a single
mobile agent searching one machine. Then
additional machines were added until all eight
machines were searched. Next, two mobile agents
were used searching from two to eight machines. We
continued this pattern until eight agents were used to
search eight machines. As expected, the total search
time decreased by up to 50%, along with the network
message traffic, as the number of agents increased.
Table 2 shows average search times of the mobile
agent system in its various configurations.

6.3. Communications Impact

Total network traffic for the static agent system,
which passed five messages per search sequence per
number of machines, required a total of 400
kilobytes. When all eight machines were being
searched, a total of approximately 3.2 megabytes of
message traffic was generated. In the mobile system,
traffic was generated each time an agent moved from
one machine to another. Additionally, the payload of
the messages grew with respect to the number of
machines that had been searched. The single mobile
agent (searched all eight machines by itself)
generated roughly 1.1 megabytes of traffic while
eight mobile agents (searching the same eight
machines) generated approximately 1.2 megabytes of
network traffic.

7. CONCLUSIONS

Initially, we expected the static agent system to
outperform the mobile agent system. In the first
scenario, when one MobileSearchAgent performed a
serial search of all the machines, we expected the
static implementation, which was running in parallel,
to complete it in a fraction of the time proportional to
the number of machines being inspected. This in fact
was the case with more than two machines.

However, once multiple MobileSearchAgents
were employed, the mobile agent system was faster
in all cases. As seen in the 8 MobileSearchAgents
configuration, the time to execute the search was
almost five times faster. We strongly suspect that the
reason the static system was slower was due to the
amount of overhead (both in communications and
wasted processor time) necessary for maintaining the
conversations. Using this particular implementation
forced the static solution into dividing its processor
time among too many threads.

 1 MobileSearchAgent 2 MobileSearchAgents 4 MobileSearchAgents 8 MobileSearchAgents
Mach
Config

Avg Min Max St Dev Avg Min Max St Dev Avg Min Max St Dev Avg Min Max St Dev

1 Mach 7.220 7.052 7.412 0.128

2 Mach 14.985 14.844 15.055 0.067 9.867 9.525 10.016 0.165

3 Mach 24.744 21.925 26.388 1.663 14.582 14.423 14.702 0.083

4 Mach 31.767 29.332 33.128 1.294 17.742 17.538 17.878 0.119 10.195 10.025 10.406 0.126

5 Mach 40.947 40.753 41.394 0.192 23.232 22.896 23.976 0.399 13.546 12.990 13.772 0.276

6 Mach 46.903 46.903 48.706 0.558 25.757 25.490 26.081 0.211 14.947 14.854 15.083 0.074

7 Mach 53.814 53.814 55.617 0.576 30.017 29.867 30.217 0.105 16.101 15.975 16.205 0.085

8 Mach 61.446 61.446 62.587 0.365 33.830 33.542 34.413 0.258 17.986 17.828 18.118 0.109 9.991 9.615 10.607 0.364

Table 2: MobileSearchAgent Execution Times

7

In contrast, the mobile agent system had a more
finely tuned communication framework. A
MobileSearchAgent only needed to check for
messages at certain times within its execution. On
the other hand, the static agent system had to
implement a resource intensive communication
framework to maintain their conversation structure.

Further, the amount of TCP/IP traffic placed on
the wire by the 8-MobileSearchAgent parallel tests
was more than 50% smaller than the traffic generated
by the static implementation. Having mobile agents
pass results along with its current stack state, proved
not to be as costly in terms of network bandwidth as
expected. This was the case even though the mobile
agent implementation actually created extra overhead
by having the MobileSearchAgent return home
after searching its list of machines instead of just
sending a final results message back to the
MobileAgentManager. These results were quite
opposite of what we expected at the onset of the
experiment. The packets that both implementations
sent contained serialized Java objects, which
contributed to similarity in message size.

Even though our research seems to show that, in
this case, the mobile agent system is a better choice
(mainly due to an inefficient static agent system
design), our research is certainly not all-inclusive.
Besides redesigning the static agent conversation
mechanism, an interesting experiment would be to
expand the problem to involve service negotiation.
In the static agent implementation, the Researcher
agent could negotiate based on the amount of
processes running on the system at the time of the
search. Perhaps high priority jobs could get
processor time before lower priority processes. On
the mobile side, the agent could determine whether or
not there is enough processor time to complete a
search. If not, the agent could move on to the next
machine and return to the current machine later.

Even though we look at only one problem and a
limited number of cases, we believe experiments like
ours are an important step towards the objective
evaluation of multiagent systems. Having
quantifiable data on which to base a design decision
makes the justification of such decisions stronger.

8. ACKNOWLEDGEMENTS

This research was supported by the Air Force
Office of Scientific Research. The views expressed
in this paper are those of the authors and do not
reflect the official policy or position of the United
States Air Force, Department of Defense, or the US
Government.

9. REFERENCES

[1] S. A. DeLoach, “Multiagent Systems
Engineering: a Methodology and Language for
Designing Agent Systems,” Proceedings of Agent
Oriented Information Systems (AOIS99), Seattle
Washington, May 1999.

[2] S. A. DeLoach and M. Wood, “Developing
Multiagent Systems with agentTool,” in Proceedings
of The Seventh International Workshop on Agent
Theories, Architectures, and Languages, Boston,
Massachusetts, July 2000.

[3] N. R. Jennings, “On Agent-based Software
Engineering,” Artificial Intelligence: Vol 117, pp.
277-296, 2000.

[4] J. Odell, “Considerations for Agent-Based
Technology,” Distributed Computing, August 1999.

[5] D. Wong, N. Paciorek, D. Moore, “Java-based
Mobile Agents,” Communications of the ACM,
March 1999.

[6] M.F. Wood and S.A. DeLoach, “An Overview of
the Multiagent Systems Engineering Methodology.”
in Proceedings of the First International Workshop
on Agent-Oriented Engineering (MOSE). Limerick
Ireland, June 2000.

[7] Exdump – v0.2 By PolarRoot,
http//exscan.netpedia.net/exdump.html

10. AUTHOR BIOGRAPHIES

First Lieutenant Scott A. O’Malley is a graduate
student in the Computer Science and Engineering
department at the Air Force Institute of Technology
(AFIT). His thesis research involves multiagent
system specifications and agent-oriented software
engineering. Before coming to AFIT, Lieutenant
O’Malley was stationed at Hickam Air Force Base
from 1997 to 1999. Lieutenant O’Malley received
his BS in Computer Science from University of Iowa
in 1997.

Captain Athie L. Self is a graduate student in the
Computer Science and Engineering department at the
Air Force Institute of Technology (AFIT). His thesis
research is on how to design and specify mobile
agents using the Multiagent Systems Engineering
Methodology (MaSE). Before coming to AFIT,
Captain Self was working for the Defense
Information Systems Agency (DISA) at the Pentagon
from 1996 to 1999. He has also been stationed at the

8

Headquarters Standard Systems Group. Captain Self
received his BS in Computer Science from the State
University of New York College of Technology at
Utica/Rome in 1993.

Dr. DeLoach is an Assistant Professor of
Computer Science and Engineering at the Air Force
Institute of Technology (AFIT). His research
interests include design and synthesis of multiagent
systems, knowledge-based software engineering, and
formal specification acquisition. Prior to AFIT, Dr.
DeLoach was at the Air Force Research Laboratory
from 1996 to 1998. He has also been stationed at
Headquarters Strategic Air Command and the
Aeronautical Systems Center. Dr. DeLoach received
his BS in Computer Engineering from Iowa State
University in 1982 and his MS and PhD in Computer
Engineering from the AFIT in 1987 and 1996.

